109 research outputs found

    Protocol for: Sheffield Obesity Trial (SHOT): A randomised controlled trial of exercise therapy and mental health outcomes in obese adolescents [ISRCNT83888112]

    Get PDF
    Background While obesity is known to have many physiological consequences, the psychopathology of this condition has not featured prominently in the literature. Cross-sectional studies have indicated that obese children have increased odds of experiencing poor quality of life and mental health. However, very limited trial evidence has examined the efficacy of exercise therapy for enhancing mental health outcomes in obese children, and the Sheffield Obesity Trial (SHOT) will provide evidence of the efficacy of supervised exercise therapy in obese young people aged 11–16 years versus usual care and an attention-control intervention. Method/design SHOT is a randomised controlled trial where obese young people are randomised to receive; (1) exercise therapy, (2) attention-control intervention (involving body-conditioning exercises and games that do not involve aerobic activity), or (3) usual care. The exercise therapy and attention-control sessions will take place three times per week for eight weeks and a six-week home programme will follow this. Ninety adolescents aged between 11–16 years referred from a children's hospital for evaluation of obesity or via community advertisements will need to complete the study. Participants will be recruited according to the following criteria: (1) clinically obese and aged 11–16 years (Body Mass Index Centile > 98th UK standard) (2) no medical condition that would restrict ability to be active three times per week for eight weeks and (3) not diagnosed with insulin dependent diabetes or receiving oral steroids. Assessments of outcomes will take place at baseline, as well as four (intervention midpoint) and eight weeks (end of intervention) from baseline. Participants will be reassessed on outcome measures five and seven months from baseline. The primary endpoint is physical self-perceptions. Secondary outcomes include physical activity, self-perceptions, depression, affect, aerobic fitness and BMI

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Detection of Mycobacterium ulcerans by the Loop Mediated Isothermal Amplification Method

    Get PDF
    In order to develop a simple and rapid test that can be used to diagnose Buruli ulcer under field conditions, we modified the conventional LAMP assay by using a disposable pocket warmer as a heating device for generating a constant temperature for the test reaction and employed the use of crude sample preparations consisting of boiled and unboiled extracts of the clinical specimen instead of using purified DNA as the diagnostic specimen. Thirty clinical specimens from suspected Buruli ulcer patients were investigated by the modified LAMP (or pocket warmer LAMP) and the conventional LAMP, as well as IS2404 PCR, a reference method for the detection of Mycobacterium ulcerans. There was no significant difference in the detection rate (63–70%) in all of the methods when purified samples were used for the tests. On the other hand the use of crude specimen preparation resulted in a drop in detection rate (30–40%). This study demonstrates that the LAMP test can be used for rapid detection of M. ulcerans when purified DNA preparations are used. With further improvements in the sample reaction, as well as in specimen purification, the pocket warmer LAMP may provide a simple and rapid diagnostic test for Buruli ulcer

    Long-Distance Translocation of Protein during Morphogenesis of the Fruiting Body in the Filamentous Fungus, Agaricus bisporus

    Get PDF
    Commercial cultivation of the mushroom fungus, Agaricus bisporus, utilizes a substrate consisting of a lower layer of compost and upper layer of peat. Typically, the two layers are seeded with individual mycelial inoculants representing a single genotype of A. bisporus. Studies aimed at examining the potential of this fungal species as a heterologous protein expression system have revealed unexpected contributions of the mycelial inoculants in the morphogenesis of the fruiting body. These contributions were elucidated using a dual-inoculant method whereby the two layers were differientially inoculated with transgenic β-glucuronidase (GUS) and wild-type (WT) lines. Surprisingly, use of a transgenic GUS line in the lower substrate and a WT line in the upper substrate yielded fruiting bodies expressing GUS activity while lacking the GUS transgene. Results of PCR and RT-PCR analyses for the GUS transgene and RNA transcript, respectively, suggested translocation of the GUS protein from the transgenic mycelium colonizing the lower layer into the fruiting body that developed exclusively from WT mycelium colonizing the upper layer. Effective translocation of the GUS protein depended on the use of a transgenic line in the lower layer in which the GUS gene was controlled by a vegetative mycelium-active promoter (laccase 2 and β-actin), rather than a fruiting body-active promoter (hydrophobin A). GUS-expressing fruiting bodies lacking the GUS gene had a bonafide WT genotype, confirmed by the absence of stably inherited GUS and hygromycin phosphotransferase selectable marker activities in their derived basidiospores and mycelial tissue cultures. Differientially inoculating the two substrate layers with individual lines carrying the GUS gene controlled by different tissue-preferred promoters resulted in up to a ∼3.5-fold increase in GUS activity over that obtained with a single inoculant. Our findings support the existence of a previously undescribed phenomenon of long-distance protein translocation in A. bisporus that has potential application in recombinant protein expression and biotechnological approaches for crop improvement

    Working without a blindfold: the critical role of diagnostics in malaria control

    Get PDF
    Diagnostic testing for malaria has for many years been eschewed, lest it be an obstacle to the delivery of rapid, life-saving treatment. The approach of treating malaria without confirmatory testing has been reinforced by the availability of inexpensive treatment with few side effects, by the great difficulty of establishing quality-assured microscopy in rural and resource-poor settings, and by the preeminence of malaria as a cause of important fever in endemic regions. Within the last decade, all three of these factors have changed. More expensive artemisinin combination therapy (ACT) has been widely introduced, simple immunochromatographic tests for malaria have been developed that can be used as an alternative to microscopy by village health workers, and recognition of the health cost of mismanaging non-malarial fever is growing. In most of the world a small fraction of fever is due to malaria, and reflex treatment with ACT does not make medical or economic sense. Global malaria control efforts have been energized by the availability of new sources of funding, and by the rapid reduction in malaria prevalence in a number of settings where bed nets, indoor residual spraying with insecticides, and ACT have been systematically deployed. This momentum has been captured by a new call for malaria elimination. Without wide implementation of accurate and discriminating diagnostic testing, and reporting of results, most fever will be inappropriately managed, millions of doses of ACT will be wasted, and malaria control programmes will be blindfolded to the impact of their efforts

    Rethinking the extrinsic incubation period of malaria parasites

    Get PDF
    The time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant. Current approaches to estimate EIP are largely based on temperature-dependent models developed from data collected on parasite development within a single mosquito species in the 1930s. These models assume that the only factor affecting EIP is mean environmental temperature. Here, we review evidence to suggest that in addition to mean temperature, EIP is likely influenced by genetic diversity of the vector, diversity of the parasite, and variation in a range of biotic and abiotic factors that affect mosquito condition. We further demonstrate that the classic approach of measuring EIP as the time at which mosquitoes first become infectious likely misrepresents EIP for a mosquito population. We argue for a better understanding of EIP to improve models of transmission, refine predictions of the possible impacts of climate change, and determine the potential evolutionary responses of malaria parasites to current and future mosquito control tools
    corecore